CONTROLLED NUCLEOSYNTHESIS
PREHISTORY
S. V. Adamenko
At the beginning of 2003, Professor Yurii Kondrat’ev got to know the results derived at the Electrodynamics Laboratory “Proton-21” and then gave an account of his impressions to Professor Franco Selleri. In autumn of that year, when Selleri visited the NASU Institute of Mathematics in Kiev at the invitation of Kondrat’ev to give a lecture, he also was our guest for several days. I had the pleasure to show him the laboratory’s facilities and to tell about our experiments, our ideas about the mechanisms underlying the astonishing physical phenomena discovered by us, and the bases of our assertions about their existence in nature, in general, and their reproduction in our laboratory, in particular. Sellerireadilycomprehendedthedifficultieswehadencounteredwhen trying to publish the results of our experiments on the initiation of nuclear combustion and laboratory nucleosynthesis in refereed journals.
In the great majority of cases, the conclusions of referees consisted literally of several phrases which were based on three fundamental, in their opinions, positions: 1. This cannot occur in principle; the assertions of the authors about the controlled realization of collective nuclear reactions in a superdense substance are based, most probably, on the incorrect interpretation of the results of measurements. 2. The experimental results declared by the authors have no theoretical substantiation and contradict established physical ideas. 3. The authors propose the theoretical models of nonexistent physical processes. The recommendation of Selleri was a very constructive one: “In cases similartoyours,itisverydifficulttodestroythewallofdistrustbypiecemeal publication of the papers devoted to separate aspects of the project. I think it is necessary to quickly prepare an anthology of papers which must include the most important things, starting from the conception of the experiments 3 S.V. Adamenko et al. (eds.), and finishing with the presentation of the proposed theoretical models and mechanisms of the discovered phenomena.” Appealingtomepersonally,Selleriadded:“Youshouldalsonotforget to tell the history that led you to these problems, i.e., when and why did you become interested in nuclear synthesis?” In this context, the dedication to my father prefacing this chapter is not the usual expression of filial appreciation. Indeed, if my father held a pedestrian view of life and parental obligations, I would have no special reason for evoking his memory in order to explain why I became motivated to tackle a purely physical problem from the traditional viewpoint, not being a professional physicist myself. My father was an extraordinary person in many ways. In particular, he had a phenomenal memory that enabled him to recall and use, at any moment and over many years if necessary, an inconceivable, from my viewpoint, number of dates, names, poems, quotations, facts of the own life, etc. This excellent memory and the ability to read rapidly caused my father to become an erudite person. He was especially interested in scientific and technical novelties and achievements, reports about which were numerous in the 1950s and 1960s. From childhood, he dreamed about becoming a medical doctor. But in1939,attheageof17,hewascalledupforthemilitaryserviceintheSoviet Army. Then, for the first 20 years of his long-term service, he tried many times, but without success, to go into retirement or, at least, to get permission to enter the military-medical academy, which was far removed from his military profession. Recalling the imaginative mind-set my father revealed in the process of my upbringing and the adult role games he invented for me and my friends, I am sure that he was also a real teacher at heart. When I was in my fourth year, my father apparently thought it was time to teach me the virtues of work and having a purpose in life. He brought home a large ball bearing and challenged me to extract smaller balls from it. I remember well how acutely I wanted to get them by myself and how simple the problem seemed at first. However, the ball bearing resistsed my initial efforts, and smaller balls did not jump out themselves. I had to grab a file and begin to work. I do not recall how long this went on, but only remember that this Sisyphean labor annoyed me only when I realized that I would be filing a long time, at least several days. So I complained to my father. He was quick to advise that difficult tasks should be solved first in one’s head. Only if the solution becomes clear, a hand may reach for a tool. As an example, he told me about tricks a monkey had to use in order to access food frustrating conditions.
A prompt helped me. I understood that, firstly, the ball bearing will be split up if it is thrown onto a stony roadway. Secondly, the resulting fragments will not disperse if the ball bearing is first placed in a small knotted bag. We together executed the experiment, and the fragments were in my hands in no time. This was my first creative success preserved in my memory as an example of the efficiency resulting from a proper approach. Seven years later, during an evening walk with my father, I was given a task whose comparatively simple solution I searched for most of my life. It was November 1, 1958; I remember the date only because I was ten the next day. The main theme of our conversation was that, at that age, it was time to think about serious matters and to prepare for adult life, rather than to squander free time without any purpose in mind. We looked at the evening sky, and my father taught me how to find the Polar star and the easily recognized constellations. See, he said, stars differ in brightness and even in color, because they are at various distances from us and have different sizes and temperatures. But they are all similar in principle to our Sun. Stars are shining very long, for billions of years. Then they become dim and collapse. Further, some stars explode. The radiant energy of stars originates in the combustion of matter. But it is not ordinary chemical combustion, like that in a campfire, but rather a thermonuclear one, wherein the lightest nuclei of hydrogen form the nuclei of heavier chemical elements by fusing many times. Physicists name processes of this kind thermonuclear synthesis. In thermonuclear fusion, the amount of the released energy is millions of times that produced in the usual combustion of coal or gas. The fusion process was already realized on earth in the explosions of hydrogen bombs. If the energy of such explosions were to be used for peaceful purposes, the demands of humans for energy would be satisfied for thousands of years. Unfortunately, this prospect is presently out of reach—for the following reason: A thermonuclear charge can now be fired only by the explosion of an atomic bomb, for which a critical mass is required. Thus, an atomic bomb cannot be made so small that it does not destroy everything for tens of kilometers around it. Consequently, scientists are now faced with the problem of inventing a trigger for thermonuclear charges that is simpler and cheaper, so that it can be permanently used in a thermonuclear reactor producing heat and electricity. It turns out that this problem is incredibly difficult and expensive to solve. Scientists from various countries have tried to solve it jointly. If one is interested in it, one can become a physicist and possibly, devise a suitable solution.
– But why has this problem not been solved already, and what must be done? – Well, it is necessary to heat hydrogen to an extremely high temperature, much higher than that of the sun; and no such technology exists at present. – But we can place hydrogen at the focus of a great magnifying lens and heat it in such a way to any temperature! – This method leads nowhere. – Why? – Things are not as simple, as it seems. The mastering of such a source of energy is a very complicated problem, though the experts believe that the problem is not hopeless. Learn, examine, and dream! Anybody has a chance if he or she tries. As is known, complex problems sometimes have simple solutions.
I often recall the evening conversation with my father about stars and the tempting subject of nuclear synthesis as a particularly seminal event of my childhood. In the years that followed, the problem he first posed attracted me more and more. I can give no rational explanation why the persistent thoughts about the possible, from my viewpoint, mechanisms and nature of nuclear synthesis became a habit, a hobby, as it were—one that did not require separate time, since it settled in the back of my mind, where it nonetheless kept my imagination in training. For many years, I had no serious plans for solving the synthesis problem, as I could not imagine that my own contribution would be very meaningfulincomparisonwiththeeffortsoftrueexperts.Somymusingsremained on an amateurish level. Considering stably functioning biological and technological systems composed of simple elements of the same type, I searched for a hidden logic of their origin and evolution, and for a mechanism that could help me with the unsolved problem of controlled nuclear synthesis. I was troubled by the fact that a process that produces enormous amounts of energy, serves as its main source in the universe, arises in stars spontaneously and keeps running there by itself, does not seem reproducible under terrestrial conditions, despite all our scientific and financial efforts. For a long time, it seems illogical that the simplest energy process of fusion of light nuclei, in which cosmic nuclei easily participate for objective reasons, is not realized in a controlled and efficient manner on earth, even though scientists have gained a high degree of comprehension about the structure and behavior of atomic nuclei as well as the formalization and
mathematical description of the processes involving them. I got the impression that the search was carried out in the wrong direction and that efforts were aimed at forcing nuclei meant to be fused into a behavior not peculiar to them, though fusion could occur with the selection of a more favorable final state. This simple thought served as a first prompt: It is necessary to abstract from a seemingly inevitable final state of a system of nuclei and to consider more attentively the possibly optimum conditions for the transition of this system from a given initial state to the required final one. While pursuing postgraduate studies and learning the mathematical methods for the synthesis of multiply connected dynamical systems with optimum stability, I undertook a search for, and an analysis of, such regularities in the synthesis of the complex systems composed of interacting (exchanging energy or information) elements of any physical nature which would be common for nuclear and, e.g., biological or controlling structures. The main question was as follows: For what reason do “independent” elements combine to form systems and ensembles restricting their freedom? What conditions control the sizes of systems, the number of primary elements, and the structure and the force (energy) of bonds between? What criterion guides the initial building blocks into forming a particular final product? Is it possible that, in order to complete this quest, they have randomly to “survey” all possible structural variations, among which would appear the unique required solution? Biology and genetics answer the last question in the negative: Admissible solutions would have caused Homo sapiens, who invents questions and searches for answers, not to appear for still many billions of years! Changing structure during their development, complex self-organizing systems progress to their optimum structure along a route that differs slightly from the shortest possible one. This can only mean that the systems are surely led by some force. In this case, in each step of their development (rearrangement), a systems can “estimate”, in some manner, the degree of its imperfection and can “detect” the reason for it, by getting a stimulus for the next step on a gradual track to the optimum state. It is well known that every stable system is certainly optimum in some sense. In theory, the corresponding criterion of optimality can always be found on the whole by solving the inverse problem of synthesis for the system under study, such as a traffic network, living cell, atomic nucleus, or atom. Every self-organizing structure has its own system-forming criterion. By what does it differ from a set of other possible ones, what does it demand from the system, how does it appear, and how does it take into account the features of the system and the conditions defining its selfdevelopment? In the mid-1970s, while engaged in my postgraduate tasks, I searched for an analytic solution to the problem dealing with the synthesis
of an optimum control with feedbacks for a controlled linear dynamical system subject to restrictions in the form of proper (invariant) linear subspaces that are specified a priori, in other words, with restrictions on the phase portrait of the optimum multidimensional dynamical system. As a tool, I at first used the classical method of analytic construction of optimum regulators (see Refs. 1–3). But it rapidly became obvious that no analytic methods for the systems with the mentioned restrictions existed. The development of appropriate methods was the theme of my dissertation. In particular, I proposed the method of binary synthesis, whose peculiarity resided in the following: Contrary to the classical approach, the quality criterion for a transient process as a measure of integral excitation of a system in the spaces of phase coordinates and controlling actions was set in the form of an integral of the so-called optimum target function, rather than by the integral of the sum of a prioripositive-definite functions of the phase coordinates and controlling actions. This last sum becomes the optimum target function (but a posteriori!) when the unknown control vector U(t) as a function of time is replaced in the corresponding term of the sum by the required optimum law of control with a feedback U0 [x(t)], i.e., we have a function of phase coordinates of the optimized system. The sense of such a transformation of the classical problem of the synthesis of an optimum dynamical system (it turns out to be a generalization) consists in the fact that the a posteriori optimum target function is the Lyapunov function for an optimized closed system (a positive-definite quadratic form of the phase coordinates in the linear case), whose set of quickest-descent trajectories approaches (as closely as desired with a weakening of the restrictions on the control) the phase portrait of the optimized system. Thus, the a priorisetting of an optimum target function allows one to form any desired phase portrait in the process of synthesizing the optimum system, i.e., the eigenfunctions of the dynamical system and its eigennumbers. Application of the method of binary synthesis to optimize dynamical systems allowed me to get a number of interesting results. The first formal result consists in the conclusion that one can completely reject the necessity, inevitable in the classical case, to seek the parameters of the a prioriquadratic forms of a quality functional (the criterion of optimality) by the method of an actually arbitrary exhaustive search in order to get the more or less satisfactory phase portrait of an optimum system. I note that such a portrait can nevertheless never “fall” into the set restrictions. Instead, the necessary, but basically not guessed, parameters of the a prioriquadratic form of the criterion and parameters of the optimum feedback law were finally derived in the framework of the method of binary
synthesis from the solutions of the relevant systems of equations—which are, naturally, also the generalizations of the systems of equations belonging to the classical version. In other words, two optimization problems were solved within the framework of the method of binary synthesis, at least from the formal viewpoint. Our direct problem was to search for U0[x(t)], while the inverse problem consisted in the search for a term in the integrand of the quality criterion as an a prioriindefinable quadratic form in the phase coordinates of the system. This term is a prioriunknown but uniquely necessary for the application of the required restrictions. Just this circumstance explains our use the adjective “binary” to qualify the proposed method of synthesis. The second, more significant, result of this method is that its natural motions relative to, e.g., any hyperplane restriction given in phase space can possess, if necessary, an arbitrarily small inertia. Moreover, the given hyperplane-restriction can differ slightly, to any desired degree, from the (n − 1)-dimensional (n being the dimensionality of phase space) proper invariant subspace of the optimized system. In particular, this means the minimization of the excited (forced) motion energy of the optimized system relative to the own relevant hyperplane arbitrarily located, in the general case, in phase space. It is easy to see that this actually implies that the procedure of binary synthesis allows one to attain the maximum stability and minimum dissipativity of the system with respect to a “pathological” external perturbation which moves the point representing the system beyond the given invariant hyperplane possessing the highest priority among the goals of the optimization or those of the homeostasis of the system. The external perturbation setting a direction in the system’s phase space such that the forced movement along it is characterized by the maximum absorption of the energy dissipated in the system, which leads to its maximum heating or to the maximum destruction, was called the “dominant perturbation”. A dominant perturbation exciting synchronously and with identical phase all the degrees of freedom or all interacting elements of the system is called the “global dominant perturbation”. Itwaseasytoseethat, inthe framework oftheproblemofbinary synthesis, the optimum structure of a multiply connected dynamical system and parameters of the formal criterion can be found in a self-consistent way as functions of the exceptionally objective factors: namely, the parameters of an object of the optimization and the parameters of external perturbations acting on it. It thus turned out that, in the problem of binary synthesis under the condition of the setting (or the determination by the system itself) of the
direction of action of the global dominant perturbation, the determination of anoptimumstructureofthebondsbetweenelementsofthesystemcanoccur self-consistently and simultaneously with the search for the corresponding (not fixed a priori) parameters of the criterion of optimality of the process. Similar to what holds for the optimum system, this process depends on its initial parameters and also on external perturbations acting on the system. Upon a change in external perturbations, we can observe, in principle, the automatic “switching on” of the next cycles of the adaptation of the system to external conditions. These cycles, by repeating with each recurrence of a dominant perturbation, are able to support the process of continuous selforganization and reorganization of the system and to ensure asymptotically, in particular: • The “reflection of images” of the external dominant perturbations in the structure of bonds between elements of the system and, as a consequence, in the set of its own subspaces of different dimensionalities, which can be considered as the operation of a distinctive mechanism of the system’s memory and its adaptation to the external dominant perturbations. • The maximization of stability and the minimization of inertia for the natural motions of the system that arise in its phase space as a result of the action of external dominant perturbations.
The statement of the mentioned peculiarities of the problem and the binary synthesis algorithm for a dynamical system made a strong impression on me in 1980. In these peculiarities, one may guess the characteristic features of a long-expected mechanism of the “self-synthesis” to lie. The last was comprehended as the self-organizing self-developing “not powerful” natural process of nucleosynthesis, temporarily unclarified, but certainly existing and held responsible for the formation of a whole set of the naturally coexistent nuclei and atoms of chemical elements. Against the background of the discovered peculiarities of the offered algorithm of the optimization of structures, I made an assumption on the existence of a universal natural regularity which I called tentatively the principle of regularization of perturbations and dynamical harmonization of systems. This regularity indicates the general direction for the improvement of self-organizing multicomponent dynamical systems: At the expense of a restriction of the individual freedom of interacting elements (particles), one can reach a maximally attainable decrease in the inertia of a reaction of the whole system to various external dominant perturbation that coherently act on each participating element and thus have the distinctive signs of a mass force.
At that time, such a “discovery for internal use” caused me to experience an intense emotional excitement. I remember well-being overcome by a spell of euphoria. Thus, the process of synthesis of self-organizing dynamical systems, which one can realistically apply to nuclear structures as well, reveals the logic of initiation and development that appeals to my way of thinking. Intuition prompted me to surmise that, regardless of the degree of practical usefulness and real novelty of the formulated principle, the apparently self-sufficient physical mechanism of reflection on the information contained in the structures of dynamical systems could become a peculiar key to comprehending the required self-organizing mechanism of nuclear synthesis on the macroscopic level, which continued to be a castle in the air. Analysis of a system optimized in the framework of the binary synthesis algorithm showed that a parallel consequence of such a “behavior” of the self-organizing dynamical system will be a maximization of the stability of itsownmotionexcitedbyareflectedexternaldominantperturbation,aswell as the minimization of a “destructibility” of the system under the action of this perturbation; this can be interpreted naturally as the maximization of the binding energy of the system with regard to restrictions on the physical natureofsystem-formingelementsandtheforcesoftheirmutualinteraction. At that time, the computer realization of the binary synthesis algorithm showed that it is possible to attain an arbitrarily small inertia of the system in the direction of the action of a dominant external perturbation upon a sufficiently large number of “bound” (interacting) elements, despite a restriction on the forces of interaction (on the intensity of bonds) between them; in this case, the system’s inertia on each of the remaining degrees of freedom can be arbitrarily slightly different from the initial one. The mentioned peculiarities of the organization of optimum systems, despite the colossal differences of the used limitedly simplified descriptions from adequate physical models of atomic-nuclear and other natural structures, allowed me to assume that the basic synergetic properties of systems did not depend on their specific nature and always manifest themselves in the self-organization of complex dynamical structures undergoing the organizing action of intense (dominant) external perturbations. By the beginning of 1986, similar thoughts led me to conclude that the main difficulty for the controlled synthesis of nuclei consisted in the artificialcreationofjustsuchexternaldominantperturbationcommontothe totality of nuclei involved in the process of synthesis, whose optimum “reflection” would be completed, in the sense of the above-presented approach (the binary synthesis), by the exothermic (exoenergetic) fusion of initial nuclei.
I further reasoned as follows: If the factor defining the result of any synthesis is a dominant perturbation common to the interacting initial components, such a perturbation must exist and play a defining role in the natural processes such as a simple fusion of nuclei (i.e., in the “thermonuclear synthesis” in the traditional sense) and, in the wider sense, the complex process of natural nucleosynthesis, whose products are the nuclei of all chemical elements up to the heaviest ones. If such system-forming action were to be discovered, then it would be possible to search for its analog artificially realized under laboratory conditions. These were the preliminary positions, in general terms, of my conception regarding the artificial initiation of self-organizing nuclear synthesis, which were formulated in 1987–1988, 30 years after I first encountered the problem. If it were not for an improbable coincidence of circumstances, the necessity or even the occasion to tell this history would never have occurred. At least, I had no such intentions until February 2000. At that time, a decade after the start of the “Perestroika” in the USSR and five years after Ukraine gained its independence, I together with many colleagues in the profession had to work in the field of business and already saw the decline of personal dreams about thermonuclear synthesis. Moreover, the inexorable chain of some events deprived me of the last hope to be involved the solution of the thermonuclear synthesis problem. But the situation was about to change due to unforseen circumstances. In 1996, my dear friend Dr. Boris Sinyuta, an expert in the field of radiation medicine, who since passed away to my deep regret, introduced me to Dr. Vladimir Stratienko of the Kharkiv Physico-Technical Institute in order to discuss commercial plans for the production of isotopes for medical purposes in Ukraine. Dr. Stratienko saw me as a former young scientist and now a businessman who, on the one hand, had some money and, on the other hand, was ready to share it for the benefit of nuclear science and scientists, if an interesting project presented itself. So, Dr. Stratienko tried to convince me that, by using microbeams of relativistic electrons in a vacuum diode, it was possible to focus them at the end of a thin cylindrical target anode up to a current density of at least 1010A·cm−2. He assumed that this would lead to the formation of a highly ionized plasma in a small near-axis volume where the beam interact with the target. Such a plasma could be compressed and held by the magnetic field of the beam in a state with density and temperature high enough to ensure
a positive energy-gain in the scheme of inertial thermonuclear synthesis if a suitable thermonuclear (e.g., D-T) target is used. To practically design a driver on the basis of a hypothetically existent mechanism for the self-focusing of an electron beam to extreme current densities,arelativelysmallfinancialsupportbyagroupofenthusiasts, living in the difficult period of the global economic transformation, was required. At that time, there was not, and could not be, any convincing proof of the feasibility of the proposed scheme. However, all doubts were rejected on the basis of a presentiment, rather than of a comprehension, that a focused electron beam can fully play the role of a long-expected dominant perturbation for the set of particles forming the completely ionized substance of a target and compressed by the magnetic field of the beam. Strangely, an inner voice commanded us to act, promising the realization of a dream in the face of an adverse reality. Thetemptationwasgreat,andthesumofmoneyrequiredforsupport of the pilot was small and available. So, the decision was made, business was ceased, and I began recounting time in my last attempt to participate in solving the problem of controlled thermonuclear synthesis. Soon an initiative group, composed of Kiev and Kharkiv experts (mainly theorists) in the fields of solid state physics, plasma physics, high-energy physics, accelerating techniques, the theory of systems, and nuclear physics, was formed. For at least three years, we held on a frequent basis seminars in Kiev and Kharkiv in turn; we discussed mechanisms, models, analogies, theories, the experiments performed by others, and plans for the establishment of a laboratory, in which we hoped to solve, by simple and efficient means, the problem of controlled thermonuclear synthesis in its inertial version. In the first stage, we presume to achieve success with the help of a self-compressing, “self-lacing” hard-current microbeam of electrons. The beam directed on the end or point of a target-anode should move continuously along the target axis, “consume” its core, and transform it into a superheated, supercompressed thermonuclear plasma until the pulse ceases. This process can be made to run with any required frequency by releasing the necessary energy. Unfortunately, after analyzing for some time the essence of the work that had to be carried out de facto by a self-pinching beam moving along the target axis, I began to doubt the plan would succeed. The reason for my doubt was that the outlined scenario did not include something similar to a global dominant perturbation for the target nuclei “boiling” in the plasma plate. In this case, according to the logic of my own basic conception, it was difficult to rely on the appearance of conditions for the realization of a mechanism of self-organizing synthesis (presumably, it should be similar to the natural mechanism). Hence, one could not expect that the initiated process
would generate the required synthesized nuclei that were stable with respect to the action generating them and were naturally stable by possessing the maximum store of the stability to a decay. I felt too na¨ıve at that time to discuss my own “nuclear-synergetic projects” with my colleagues, anticipating their ironic response. At least, that’s what I thought. All the same, at the beginning of 1998, the initiative group included thefollowingpersons:myself,headingthegroup;Dr.N.Tolmachev,formerly a student at the Kharkiv Aircraft Institute and then the director of a multiprofile building firm, was a sponsor of, and participant in, brainstorming sessions; active Kharkiv scientists, including an expert on nuclear physics, the owner of a huge collection of papers on a number of trends related to our interests, Dr. V. Stratienko; Professor I. Mikhailovsky; Dr. E. Bulyak, profoundly knowledgeable about beams and accelerators; Drs. V. Novikov and A. Pashchenko, the authors of numerous papers on statistical theory and thermodynamics, the theory of plasma, beams of charged particles, and nonlinear processes; Dr. I. Shapoval, an expert on mathematical modeling of physical processes and on computer structures; Kiev theorists: corresponding member of the National Academy of Sciences of Ukraine, Professor P. Fomin of the Institute of Theoretical Physics of NASU; an expert in the field of coherent processes and nuclear physics, Professor V. Vysotskii of T. Shevchenko Kiev National University, the author of one of the first models of inversionless γ-lasers. Up to the middle of 1998, the initiative group held the view that further theoretical discussions were unpromising without an experimental foundation and without the possibility to practically verify the developed ideas. So, it became urgent to find new investors who could help in the establishment of a small research laboratory and in the creation of an experimental setup that would allow us to verify the main working hypotheses and select the viable ones from among them. At that moment, deus ex machina again intervened, owing to a meeting I had with the directors of a large Kiev business concern, the Kiev Polytechnical Institute graduates Andrei Bovsunovsky and Aleksandr Kokhno, who after 1991 had left the laboratories of military plants and, together with partners, established a large-scale multiprofile holding. After a half-year study of the problem, new potential investors were fired up by the idea and finally agreed to support our work. We posed the following program: Establish a physical laboratory in nine months, design, produce, and launch the setup (a hard-current highvoltage generator of electric high-power pulses), provide the formation of a focused beam of electrons and, with its help, get and demonstrate the real
evidence for the attainment of the introduction of energy into a target. This last step would ensure, in particular, the fulfillment of the conditions for the positive gain of energy needed for inertial thermonuclear synthesis. We had only nine months, and it was difficult to imagine that the allocated funds would suffice for the posed task. However, we had no choice. Besides, I felt the inexplicable confidence, fed by a sixth sense in the saving potentiality of the general hypothesis about the principle of dynamical harmonization. In late April 1999, due to efforts of new investors, we organized the Electrodynamics Laboratory in the structure of the Kiev company “Enran.” The purpose of the Laboratory was to realize the project which received the symbolic name Luch. The mission of the Laboratory was briefly formulated as follows: to create an experimental beam-based driver for inertial thermonuclear synthesis on the principles of superconcentration of the energy of an electron beam in the small internal (near-axis) volume of a thin cylindrical target. After nine months, in January 2000, the private physical laboratory, possessing the necessary measuring and vacuum facilities, was functioning as was planned, in the leased and repaired premises of a deserted production base. We launched a generator of electric power pulses which allowed us to derive a beam of electrons with a total energy up to 300J and a pulse duration up to 100ns. During this period, we carried out the initial 35 experiments — discharges with thin, up to 300µm, target anodes. Most members of our team believed that our goal was in sight. Very soon we would observe a thin channel along the target axis as a result of the formation of a self-pinching plasma with an ion density >1024 cm−3 and an ion temperature >10 keV. Thus, the product nτ should exceed the threshold value 1014 s·cm−3 and reach a value >5·1016 s·cm−3. What would remain was only to place a thermonuclear target on the axis, register a positive release of energy, mail the communication to Phys. Rev. Lett., and confidently to await the acclaim of the scientific community. However, the process was not running for some reason! The beam resisted our attempt to squeeze it along the target axis and thus to create a thermonuclear plasma along the way. Moreover, we did not practically observe any evidences for the localization of a more or less significant energy in some small volume of substance. Our optimism began to wane. The experts who had recently foreseen the required behavior of a beam gave various recommendations for changes in the parameters of the driver and in the diode geometry, but then their flow of recommendations ceased and the brightness in their eyes faded.
The time given for the finding of results had passed, and the allocated funds were spent. We arrived at a dramatic collapse of our risky attempt. The “anesthetic” thought that “we are not the first, and we will not be the last” also gave no consolation. Our investors were not indifferent observers; they asked me, as the head of the project and the Laboratory, only two questions: “What does it mean?” and “Where are your regularization and harmonization?” What remained for me was to recognize defeat and say good-bye for ever to my beloved physics of nuclear synthesis after a fascinating but brief and unrequitted fling. However, an inner voice imposed an inexplicable calm and asserted that literally nothing was done to realize the idea championed by it. I had to analyze again the reasons for our failure. To do this analysis and to make a last attempt to successfully carry out the experiment, we had two to three weeks; after the end of February 2000, work in the scope of our project had to be interrupted for a long period or for ever. Our analysis revealed the following:
1. The localization of the focus of a superdense electron beam on the end of a target-anode is not stable. Hence, one should use a compulsory force fixation by unknown means. 2. Even if the above problem could be solved, the compression and superintense heating by the self-focusing electron beam cannot be considered a dominant perturbation common to the atoms and nuclei of a target substance, because, in this case, a coherent and unidirectional excitation of their states by a mass force is absent in principle. Moreover, the intense heating of a substance, only by increasing the energy of the chaotic movement of particles, cannot play the role of a dominant external perturbation in principle and, hence, cannot stimulate the evolutionary energy-gained fusion of the initial particles of a nuclearfuelintothemorehighlydevelopednuclearstructuresofsynthesis products.
Inother words, it was obvious that the heating of the plasma hampers the efficient and successful self-organizing synthesis of nuclei; rather than stimulating this process, it only creates the conditions for random binary nuclear collisions, only a small part of which can result in fusion. In this case, though, the reactions of synthesis for the lightest nuclei are energygained and are accompanied by the release of free energy; the mass defect formation does not lead for binary reactions to a decrease in the inertia of the entire totality of elements participating in the response on the external action by any from the separated degrees of freedom in the space of states
of the initial system of particles and hence does not correspond to the principle of dynamical harmonization. Nothing remained to be done except for one more attempt, possibly the last, to find the “golden key” for nucleosynthesis which, on the one hand, could explain at least a part of the actually observed astrophysical phenomena related to the creation of the spectrum of the chemical elements and, on the other hand, would admit the occurrenceof nucleosynthesis under laboratory conditions. Despite the drawn-out prehistory, the fast choice of a successful, as is now clear, solution was promoted by time restrictions and the complete absenceofanyconstructiveideasexceptonesnotcanonizedinthetraditional approaches to controlled thermonuclear synthesis. It became clear that the electron beam by itself is not a coherent and monochromatic flow of energy; it transfers energy to a target for a period that is long on the nuclear scale and thus cannot play the role of a dominant external perturbation for a macroscopic ensemble of particles that could act synchronously and co-phasally on them all as a mass force. At the same time, it is difficult to find an alternative to a weakly relativistic electron beam from the viewpoint of both the efficiency of a volume interaction with the target substance and the excitation of its collective degrees of freedom. One day, it suddently dawned on me, as a fully obvious thought, that the electron beam should be used for the excitation of a coherent avalanche-like self-supporting low or isentropic secondary (with respect to the beam) process which will develop by the laws of nonlinear phenomena with a positive feedback. The requirements of coherence and self-preservation for the initiated secondary process imply that this process has to be wavy and soliton-like, whereas the necessity of both a continuous “sharpening” of the process and a concentration of the released energy demands that the process should be self-focusing and spherically or cylindrically (concentrically) convergent. Intuitively, I felt the impending birth of the conception of the artificially initiated collapse of a microtarget, which is considered in the next chapter. This brought to a close the long prehistory of the invention of a means of shock compression of a substance, whose substantiation, experimental testing, and attempted theoretical explanation constitute the bulk of the present book.
ANAΔΗΜΟΣΙΕΥΣΗ ΑΠΟ ΤΟ ΒΙΒΛΙΟ:
"Controlled Nucleosynthesis Breakthroughs in Experiment and Theory"
Electrodynamics Laboratory “Proton-21” Kiev, Ukraine
Franco Selleri Universit`a di Bari Bari, Italy
Alwyn van der Merwe University of Denver Denver, Colorado, U.S.A.
Stanislav Adamenko
PREHISTORY
S. V. Adamenko
At the beginning of 2003, Professor Yurii Kondrat’ev got to know the results derived at the Electrodynamics Laboratory “Proton-21” and then gave an account of his impressions to Professor Franco Selleri. In autumn of that year, when Selleri visited the NASU Institute of Mathematics in Kiev at the invitation of Kondrat’ev to give a lecture, he also was our guest for several days. I had the pleasure to show him the laboratory’s facilities and to tell about our experiments, our ideas about the mechanisms underlying the astonishing physical phenomena discovered by us, and the bases of our assertions about their existence in nature, in general, and their reproduction in our laboratory, in particular. Sellerireadilycomprehendedthedifficultieswehadencounteredwhen trying to publish the results of our experiments on the initiation of nuclear combustion and laboratory nucleosynthesis in refereed journals.
In the great majority of cases, the conclusions of referees consisted literally of several phrases which were based on three fundamental, in their opinions, positions: 1. This cannot occur in principle; the assertions of the authors about the controlled realization of collective nuclear reactions in a superdense substance are based, most probably, on the incorrect interpretation of the results of measurements. 2. The experimental results declared by the authors have no theoretical substantiation and contradict established physical ideas. 3. The authors propose the theoretical models of nonexistent physical processes. The recommendation of Selleri was a very constructive one: “In cases similartoyours,itisverydifficulttodestroythewallofdistrustbypiecemeal publication of the papers devoted to separate aspects of the project. I think it is necessary to quickly prepare an anthology of papers which must include the most important things, starting from the conception of the experiments 3 S.V. Adamenko et al. (eds.), and finishing with the presentation of the proposed theoretical models and mechanisms of the discovered phenomena.” Appealingtomepersonally,Selleriadded:“Youshouldalsonotforget to tell the history that led you to these problems, i.e., when and why did you become interested in nuclear synthesis?” In this context, the dedication to my father prefacing this chapter is not the usual expression of filial appreciation. Indeed, if my father held a pedestrian view of life and parental obligations, I would have no special reason for evoking his memory in order to explain why I became motivated to tackle a purely physical problem from the traditional viewpoint, not being a professional physicist myself. My father was an extraordinary person in many ways. In particular, he had a phenomenal memory that enabled him to recall and use, at any moment and over many years if necessary, an inconceivable, from my viewpoint, number of dates, names, poems, quotations, facts of the own life, etc. This excellent memory and the ability to read rapidly caused my father to become an erudite person. He was especially interested in scientific and technical novelties and achievements, reports about which were numerous in the 1950s and 1960s. From childhood, he dreamed about becoming a medical doctor. But in1939,attheageof17,hewascalledupforthemilitaryserviceintheSoviet Army. Then, for the first 20 years of his long-term service, he tried many times, but without success, to go into retirement or, at least, to get permission to enter the military-medical academy, which was far removed from his military profession. Recalling the imaginative mind-set my father revealed in the process of my upbringing and the adult role games he invented for me and my friends, I am sure that he was also a real teacher at heart. When I was in my fourth year, my father apparently thought it was time to teach me the virtues of work and having a purpose in life. He brought home a large ball bearing and challenged me to extract smaller balls from it. I remember well how acutely I wanted to get them by myself and how simple the problem seemed at first. However, the ball bearing resistsed my initial efforts, and smaller balls did not jump out themselves. I had to grab a file and begin to work. I do not recall how long this went on, but only remember that this Sisyphean labor annoyed me only when I realized that I would be filing a long time, at least several days. So I complained to my father. He was quick to advise that difficult tasks should be solved first in one’s head. Only if the solution becomes clear, a hand may reach for a tool. As an example, he told me about tricks a monkey had to use in order to access food frustrating conditions.
A prompt helped me. I understood that, firstly, the ball bearing will be split up if it is thrown onto a stony roadway. Secondly, the resulting fragments will not disperse if the ball bearing is first placed in a small knotted bag. We together executed the experiment, and the fragments were in my hands in no time. This was my first creative success preserved in my memory as an example of the efficiency resulting from a proper approach. Seven years later, during an evening walk with my father, I was given a task whose comparatively simple solution I searched for most of my life. It was November 1, 1958; I remember the date only because I was ten the next day. The main theme of our conversation was that, at that age, it was time to think about serious matters and to prepare for adult life, rather than to squander free time without any purpose in mind. We looked at the evening sky, and my father taught me how to find the Polar star and the easily recognized constellations. See, he said, stars differ in brightness and even in color, because they are at various distances from us and have different sizes and temperatures. But they are all similar in principle to our Sun. Stars are shining very long, for billions of years. Then they become dim and collapse. Further, some stars explode. The radiant energy of stars originates in the combustion of matter. But it is not ordinary chemical combustion, like that in a campfire, but rather a thermonuclear one, wherein the lightest nuclei of hydrogen form the nuclei of heavier chemical elements by fusing many times. Physicists name processes of this kind thermonuclear synthesis. In thermonuclear fusion, the amount of the released energy is millions of times that produced in the usual combustion of coal or gas. The fusion process was already realized on earth in the explosions of hydrogen bombs. If the energy of such explosions were to be used for peaceful purposes, the demands of humans for energy would be satisfied for thousands of years. Unfortunately, this prospect is presently out of reach—for the following reason: A thermonuclear charge can now be fired only by the explosion of an atomic bomb, for which a critical mass is required. Thus, an atomic bomb cannot be made so small that it does not destroy everything for tens of kilometers around it. Consequently, scientists are now faced with the problem of inventing a trigger for thermonuclear charges that is simpler and cheaper, so that it can be permanently used in a thermonuclear reactor producing heat and electricity. It turns out that this problem is incredibly difficult and expensive to solve. Scientists from various countries have tried to solve it jointly. If one is interested in it, one can become a physicist and possibly, devise a suitable solution.
– But why has this problem not been solved already, and what must be done? – Well, it is necessary to heat hydrogen to an extremely high temperature, much higher than that of the sun; and no such technology exists at present. – But we can place hydrogen at the focus of a great magnifying lens and heat it in such a way to any temperature! – This method leads nowhere. – Why? – Things are not as simple, as it seems. The mastering of such a source of energy is a very complicated problem, though the experts believe that the problem is not hopeless. Learn, examine, and dream! Anybody has a chance if he or she tries. As is known, complex problems sometimes have simple solutions.
I often recall the evening conversation with my father about stars and the tempting subject of nuclear synthesis as a particularly seminal event of my childhood. In the years that followed, the problem he first posed attracted me more and more. I can give no rational explanation why the persistent thoughts about the possible, from my viewpoint, mechanisms and nature of nuclear synthesis became a habit, a hobby, as it were—one that did not require separate time, since it settled in the back of my mind, where it nonetheless kept my imagination in training. For many years, I had no serious plans for solving the synthesis problem, as I could not imagine that my own contribution would be very meaningfulincomparisonwiththeeffortsoftrueexperts.Somymusingsremained on an amateurish level. Considering stably functioning biological and technological systems composed of simple elements of the same type, I searched for a hidden logic of their origin and evolution, and for a mechanism that could help me with the unsolved problem of controlled nuclear synthesis. I was troubled by the fact that a process that produces enormous amounts of energy, serves as its main source in the universe, arises in stars spontaneously and keeps running there by itself, does not seem reproducible under terrestrial conditions, despite all our scientific and financial efforts. For a long time, it seems illogical that the simplest energy process of fusion of light nuclei, in which cosmic nuclei easily participate for objective reasons, is not realized in a controlled and efficient manner on earth, even though scientists have gained a high degree of comprehension about the structure and behavior of atomic nuclei as well as the formalization and
mathematical description of the processes involving them. I got the impression that the search was carried out in the wrong direction and that efforts were aimed at forcing nuclei meant to be fused into a behavior not peculiar to them, though fusion could occur with the selection of a more favorable final state. This simple thought served as a first prompt: It is necessary to abstract from a seemingly inevitable final state of a system of nuclei and to consider more attentively the possibly optimum conditions for the transition of this system from a given initial state to the required final one. While pursuing postgraduate studies and learning the mathematical methods for the synthesis of multiply connected dynamical systems with optimum stability, I undertook a search for, and an analysis of, such regularities in the synthesis of the complex systems composed of interacting (exchanging energy or information) elements of any physical nature which would be common for nuclear and, e.g., biological or controlling structures. The main question was as follows: For what reason do “independent” elements combine to form systems and ensembles restricting their freedom? What conditions control the sizes of systems, the number of primary elements, and the structure and the force (energy) of bonds between? What criterion guides the initial building blocks into forming a particular final product? Is it possible that, in order to complete this quest, they have randomly to “survey” all possible structural variations, among which would appear the unique required solution? Biology and genetics answer the last question in the negative: Admissible solutions would have caused Homo sapiens, who invents questions and searches for answers, not to appear for still many billions of years! Changing structure during their development, complex self-organizing systems progress to their optimum structure along a route that differs slightly from the shortest possible one. This can only mean that the systems are surely led by some force. In this case, in each step of their development (rearrangement), a systems can “estimate”, in some manner, the degree of its imperfection and can “detect” the reason for it, by getting a stimulus for the next step on a gradual track to the optimum state. It is well known that every stable system is certainly optimum in some sense. In theory, the corresponding criterion of optimality can always be found on the whole by solving the inverse problem of synthesis for the system under study, such as a traffic network, living cell, atomic nucleus, or atom. Every self-organizing structure has its own system-forming criterion. By what does it differ from a set of other possible ones, what does it demand from the system, how does it appear, and how does it take into account the features of the system and the conditions defining its selfdevelopment? In the mid-1970s, while engaged in my postgraduate tasks, I searched for an analytic solution to the problem dealing with the synthesis
of an optimum control with feedbacks for a controlled linear dynamical system subject to restrictions in the form of proper (invariant) linear subspaces that are specified a priori, in other words, with restrictions on the phase portrait of the optimum multidimensional dynamical system. As a tool, I at first used the classical method of analytic construction of optimum regulators (see Refs. 1–3). But it rapidly became obvious that no analytic methods for the systems with the mentioned restrictions existed. The development of appropriate methods was the theme of my dissertation. In particular, I proposed the method of binary synthesis, whose peculiarity resided in the following: Contrary to the classical approach, the quality criterion for a transient process as a measure of integral excitation of a system in the spaces of phase coordinates and controlling actions was set in the form of an integral of the so-called optimum target function, rather than by the integral of the sum of a prioripositive-definite functions of the phase coordinates and controlling actions. This last sum becomes the optimum target function (but a posteriori!) when the unknown control vector U(t) as a function of time is replaced in the corresponding term of the sum by the required optimum law of control with a feedback U0 [x(t)], i.e., we have a function of phase coordinates of the optimized system. The sense of such a transformation of the classical problem of the synthesis of an optimum dynamical system (it turns out to be a generalization) consists in the fact that the a posteriori optimum target function is the Lyapunov function for an optimized closed system (a positive-definite quadratic form of the phase coordinates in the linear case), whose set of quickest-descent trajectories approaches (as closely as desired with a weakening of the restrictions on the control) the phase portrait of the optimized system. Thus, the a priorisetting of an optimum target function allows one to form any desired phase portrait in the process of synthesizing the optimum system, i.e., the eigenfunctions of the dynamical system and its eigennumbers. Application of the method of binary synthesis to optimize dynamical systems allowed me to get a number of interesting results. The first formal result consists in the conclusion that one can completely reject the necessity, inevitable in the classical case, to seek the parameters of the a prioriquadratic forms of a quality functional (the criterion of optimality) by the method of an actually arbitrary exhaustive search in order to get the more or less satisfactory phase portrait of an optimum system. I note that such a portrait can nevertheless never “fall” into the set restrictions. Instead, the necessary, but basically not guessed, parameters of the a prioriquadratic form of the criterion and parameters of the optimum feedback law were finally derived in the framework of the method of binary
synthesis from the solutions of the relevant systems of equations—which are, naturally, also the generalizations of the systems of equations belonging to the classical version. In other words, two optimization problems were solved within the framework of the method of binary synthesis, at least from the formal viewpoint. Our direct problem was to search for U0[x(t)], while the inverse problem consisted in the search for a term in the integrand of the quality criterion as an a prioriindefinable quadratic form in the phase coordinates of the system. This term is a prioriunknown but uniquely necessary for the application of the required restrictions. Just this circumstance explains our use the adjective “binary” to qualify the proposed method of synthesis. The second, more significant, result of this method is that its natural motions relative to, e.g., any hyperplane restriction given in phase space can possess, if necessary, an arbitrarily small inertia. Moreover, the given hyperplane-restriction can differ slightly, to any desired degree, from the (n − 1)-dimensional (n being the dimensionality of phase space) proper invariant subspace of the optimized system. In particular, this means the minimization of the excited (forced) motion energy of the optimized system relative to the own relevant hyperplane arbitrarily located, in the general case, in phase space. It is easy to see that this actually implies that the procedure of binary synthesis allows one to attain the maximum stability and minimum dissipativity of the system with respect to a “pathological” external perturbation which moves the point representing the system beyond the given invariant hyperplane possessing the highest priority among the goals of the optimization or those of the homeostasis of the system. The external perturbation setting a direction in the system’s phase space such that the forced movement along it is characterized by the maximum absorption of the energy dissipated in the system, which leads to its maximum heating or to the maximum destruction, was called the “dominant perturbation”. A dominant perturbation exciting synchronously and with identical phase all the degrees of freedom or all interacting elements of the system is called the “global dominant perturbation”. Itwaseasytoseethat, inthe framework oftheproblemofbinary synthesis, the optimum structure of a multiply connected dynamical system and parameters of the formal criterion can be found in a self-consistent way as functions of the exceptionally objective factors: namely, the parameters of an object of the optimization and the parameters of external perturbations acting on it. It thus turned out that, in the problem of binary synthesis under the condition of the setting (or the determination by the system itself) of the
direction of action of the global dominant perturbation, the determination of anoptimumstructureofthebondsbetweenelementsofthesystemcanoccur self-consistently and simultaneously with the search for the corresponding (not fixed a priori) parameters of the criterion of optimality of the process. Similar to what holds for the optimum system, this process depends on its initial parameters and also on external perturbations acting on the system. Upon a change in external perturbations, we can observe, in principle, the automatic “switching on” of the next cycles of the adaptation of the system to external conditions. These cycles, by repeating with each recurrence of a dominant perturbation, are able to support the process of continuous selforganization and reorganization of the system and to ensure asymptotically, in particular: • The “reflection of images” of the external dominant perturbations in the structure of bonds between elements of the system and, as a consequence, in the set of its own subspaces of different dimensionalities, which can be considered as the operation of a distinctive mechanism of the system’s memory and its adaptation to the external dominant perturbations. • The maximization of stability and the minimization of inertia for the natural motions of the system that arise in its phase space as a result of the action of external dominant perturbations.
The statement of the mentioned peculiarities of the problem and the binary synthesis algorithm for a dynamical system made a strong impression on me in 1980. In these peculiarities, one may guess the characteristic features of a long-expected mechanism of the “self-synthesis” to lie. The last was comprehended as the self-organizing self-developing “not powerful” natural process of nucleosynthesis, temporarily unclarified, but certainly existing and held responsible for the formation of a whole set of the naturally coexistent nuclei and atoms of chemical elements. Against the background of the discovered peculiarities of the offered algorithm of the optimization of structures, I made an assumption on the existence of a universal natural regularity which I called tentatively the principle of regularization of perturbations and dynamical harmonization of systems. This regularity indicates the general direction for the improvement of self-organizing multicomponent dynamical systems: At the expense of a restriction of the individual freedom of interacting elements (particles), one can reach a maximally attainable decrease in the inertia of a reaction of the whole system to various external dominant perturbation that coherently act on each participating element and thus have the distinctive signs of a mass force.
At that time, such a “discovery for internal use” caused me to experience an intense emotional excitement. I remember well-being overcome by a spell of euphoria. Thus, the process of synthesis of self-organizing dynamical systems, which one can realistically apply to nuclear structures as well, reveals the logic of initiation and development that appeals to my way of thinking. Intuition prompted me to surmise that, regardless of the degree of practical usefulness and real novelty of the formulated principle, the apparently self-sufficient physical mechanism of reflection on the information contained in the structures of dynamical systems could become a peculiar key to comprehending the required self-organizing mechanism of nuclear synthesis on the macroscopic level, which continued to be a castle in the air. Analysis of a system optimized in the framework of the binary synthesis algorithm showed that a parallel consequence of such a “behavior” of the self-organizing dynamical system will be a maximization of the stability of itsownmotionexcitedbyareflectedexternaldominantperturbation,aswell as the minimization of a “destructibility” of the system under the action of this perturbation; this can be interpreted naturally as the maximization of the binding energy of the system with regard to restrictions on the physical natureofsystem-formingelementsandtheforcesoftheirmutualinteraction. At that time, the computer realization of the binary synthesis algorithm showed that it is possible to attain an arbitrarily small inertia of the system in the direction of the action of a dominant external perturbation upon a sufficiently large number of “bound” (interacting) elements, despite a restriction on the forces of interaction (on the intensity of bonds) between them; in this case, the system’s inertia on each of the remaining degrees of freedom can be arbitrarily slightly different from the initial one. The mentioned peculiarities of the organization of optimum systems, despite the colossal differences of the used limitedly simplified descriptions from adequate physical models of atomic-nuclear and other natural structures, allowed me to assume that the basic synergetic properties of systems did not depend on their specific nature and always manifest themselves in the self-organization of complex dynamical structures undergoing the organizing action of intense (dominant) external perturbations. By the beginning of 1986, similar thoughts led me to conclude that the main difficulty for the controlled synthesis of nuclei consisted in the artificialcreationofjustsuchexternaldominantperturbationcommontothe totality of nuclei involved in the process of synthesis, whose optimum “reflection” would be completed, in the sense of the above-presented approach (the binary synthesis), by the exothermic (exoenergetic) fusion of initial nuclei.
I further reasoned as follows: If the factor defining the result of any synthesis is a dominant perturbation common to the interacting initial components, such a perturbation must exist and play a defining role in the natural processes such as a simple fusion of nuclei (i.e., in the “thermonuclear synthesis” in the traditional sense) and, in the wider sense, the complex process of natural nucleosynthesis, whose products are the nuclei of all chemical elements up to the heaviest ones. If such system-forming action were to be discovered, then it would be possible to search for its analog artificially realized under laboratory conditions. These were the preliminary positions, in general terms, of my conception regarding the artificial initiation of self-organizing nuclear synthesis, which were formulated in 1987–1988, 30 years after I first encountered the problem. If it were not for an improbable coincidence of circumstances, the necessity or even the occasion to tell this history would never have occurred. At least, I had no such intentions until February 2000. At that time, a decade after the start of the “Perestroika” in the USSR and five years after Ukraine gained its independence, I together with many colleagues in the profession had to work in the field of business and already saw the decline of personal dreams about thermonuclear synthesis. Moreover, the inexorable chain of some events deprived me of the last hope to be involved the solution of the thermonuclear synthesis problem. But the situation was about to change due to unforseen circumstances. In 1996, my dear friend Dr. Boris Sinyuta, an expert in the field of radiation medicine, who since passed away to my deep regret, introduced me to Dr. Vladimir Stratienko of the Kharkiv Physico-Technical Institute in order to discuss commercial plans for the production of isotopes for medical purposes in Ukraine. Dr. Stratienko saw me as a former young scientist and now a businessman who, on the one hand, had some money and, on the other hand, was ready to share it for the benefit of nuclear science and scientists, if an interesting project presented itself. So, Dr. Stratienko tried to convince me that, by using microbeams of relativistic electrons in a vacuum diode, it was possible to focus them at the end of a thin cylindrical target anode up to a current density of at least 1010A·cm−2. He assumed that this would lead to the formation of a highly ionized plasma in a small near-axis volume where the beam interact with the target. Such a plasma could be compressed and held by the magnetic field of the beam in a state with density and temperature high enough to ensure
a positive energy-gain in the scheme of inertial thermonuclear synthesis if a suitable thermonuclear (e.g., D-T) target is used. To practically design a driver on the basis of a hypothetically existent mechanism for the self-focusing of an electron beam to extreme current densities,arelativelysmallfinancialsupportbyagroupofenthusiasts, living in the difficult period of the global economic transformation, was required. At that time, there was not, and could not be, any convincing proof of the feasibility of the proposed scheme. However, all doubts were rejected on the basis of a presentiment, rather than of a comprehension, that a focused electron beam can fully play the role of a long-expected dominant perturbation for the set of particles forming the completely ionized substance of a target and compressed by the magnetic field of the beam. Strangely, an inner voice commanded us to act, promising the realization of a dream in the face of an adverse reality. Thetemptationwasgreat,andthesumofmoneyrequiredforsupport of the pilot was small and available. So, the decision was made, business was ceased, and I began recounting time in my last attempt to participate in solving the problem of controlled thermonuclear synthesis. Soon an initiative group, composed of Kiev and Kharkiv experts (mainly theorists) in the fields of solid state physics, plasma physics, high-energy physics, accelerating techniques, the theory of systems, and nuclear physics, was formed. For at least three years, we held on a frequent basis seminars in Kiev and Kharkiv in turn; we discussed mechanisms, models, analogies, theories, the experiments performed by others, and plans for the establishment of a laboratory, in which we hoped to solve, by simple and efficient means, the problem of controlled thermonuclear synthesis in its inertial version. In the first stage, we presume to achieve success with the help of a self-compressing, “self-lacing” hard-current microbeam of electrons. The beam directed on the end or point of a target-anode should move continuously along the target axis, “consume” its core, and transform it into a superheated, supercompressed thermonuclear plasma until the pulse ceases. This process can be made to run with any required frequency by releasing the necessary energy. Unfortunately, after analyzing for some time the essence of the work that had to be carried out de facto by a self-pinching beam moving along the target axis, I began to doubt the plan would succeed. The reason for my doubt was that the outlined scenario did not include something similar to a global dominant perturbation for the target nuclei “boiling” in the plasma plate. In this case, according to the logic of my own basic conception, it was difficult to rely on the appearance of conditions for the realization of a mechanism of self-organizing synthesis (presumably, it should be similar to the natural mechanism). Hence, one could not expect that the initiated process
would generate the required synthesized nuclei that were stable with respect to the action generating them and were naturally stable by possessing the maximum store of the stability to a decay. I felt too na¨ıve at that time to discuss my own “nuclear-synergetic projects” with my colleagues, anticipating their ironic response. At least, that’s what I thought. All the same, at the beginning of 1998, the initiative group included thefollowingpersons:myself,headingthegroup;Dr.N.Tolmachev,formerly a student at the Kharkiv Aircraft Institute and then the director of a multiprofile building firm, was a sponsor of, and participant in, brainstorming sessions; active Kharkiv scientists, including an expert on nuclear physics, the owner of a huge collection of papers on a number of trends related to our interests, Dr. V. Stratienko; Professor I. Mikhailovsky; Dr. E. Bulyak, profoundly knowledgeable about beams and accelerators; Drs. V. Novikov and A. Pashchenko, the authors of numerous papers on statistical theory and thermodynamics, the theory of plasma, beams of charged particles, and nonlinear processes; Dr. I. Shapoval, an expert on mathematical modeling of physical processes and on computer structures; Kiev theorists: corresponding member of the National Academy of Sciences of Ukraine, Professor P. Fomin of the Institute of Theoretical Physics of NASU; an expert in the field of coherent processes and nuclear physics, Professor V. Vysotskii of T. Shevchenko Kiev National University, the author of one of the first models of inversionless γ-lasers. Up to the middle of 1998, the initiative group held the view that further theoretical discussions were unpromising without an experimental foundation and without the possibility to practically verify the developed ideas. So, it became urgent to find new investors who could help in the establishment of a small research laboratory and in the creation of an experimental setup that would allow us to verify the main working hypotheses and select the viable ones from among them. At that moment, deus ex machina again intervened, owing to a meeting I had with the directors of a large Kiev business concern, the Kiev Polytechnical Institute graduates Andrei Bovsunovsky and Aleksandr Kokhno, who after 1991 had left the laboratories of military plants and, together with partners, established a large-scale multiprofile holding. After a half-year study of the problem, new potential investors were fired up by the idea and finally agreed to support our work. We posed the following program: Establish a physical laboratory in nine months, design, produce, and launch the setup (a hard-current highvoltage generator of electric high-power pulses), provide the formation of a focused beam of electrons and, with its help, get and demonstrate the real
evidence for the attainment of the introduction of energy into a target. This last step would ensure, in particular, the fulfillment of the conditions for the positive gain of energy needed for inertial thermonuclear synthesis. We had only nine months, and it was difficult to imagine that the allocated funds would suffice for the posed task. However, we had no choice. Besides, I felt the inexplicable confidence, fed by a sixth sense in the saving potentiality of the general hypothesis about the principle of dynamical harmonization. In late April 1999, due to efforts of new investors, we organized the Electrodynamics Laboratory in the structure of the Kiev company “Enran.” The purpose of the Laboratory was to realize the project which received the symbolic name Luch. The mission of the Laboratory was briefly formulated as follows: to create an experimental beam-based driver for inertial thermonuclear synthesis on the principles of superconcentration of the energy of an electron beam in the small internal (near-axis) volume of a thin cylindrical target. After nine months, in January 2000, the private physical laboratory, possessing the necessary measuring and vacuum facilities, was functioning as was planned, in the leased and repaired premises of a deserted production base. We launched a generator of electric power pulses which allowed us to derive a beam of electrons with a total energy up to 300J and a pulse duration up to 100ns. During this period, we carried out the initial 35 experiments — discharges with thin, up to 300µm, target anodes. Most members of our team believed that our goal was in sight. Very soon we would observe a thin channel along the target axis as a result of the formation of a self-pinching plasma with an ion density >1024 cm−3 and an ion temperature >10 keV. Thus, the product nτ should exceed the threshold value 1014 s·cm−3 and reach a value >5·1016 s·cm−3. What would remain was only to place a thermonuclear target on the axis, register a positive release of energy, mail the communication to Phys. Rev. Lett., and confidently to await the acclaim of the scientific community. However, the process was not running for some reason! The beam resisted our attempt to squeeze it along the target axis and thus to create a thermonuclear plasma along the way. Moreover, we did not practically observe any evidences for the localization of a more or less significant energy in some small volume of substance. Our optimism began to wane. The experts who had recently foreseen the required behavior of a beam gave various recommendations for changes in the parameters of the driver and in the diode geometry, but then their flow of recommendations ceased and the brightness in their eyes faded.
The time given for the finding of results had passed, and the allocated funds were spent. We arrived at a dramatic collapse of our risky attempt. The “anesthetic” thought that “we are not the first, and we will not be the last” also gave no consolation. Our investors were not indifferent observers; they asked me, as the head of the project and the Laboratory, only two questions: “What does it mean?” and “Where are your regularization and harmonization?” What remained for me was to recognize defeat and say good-bye for ever to my beloved physics of nuclear synthesis after a fascinating but brief and unrequitted fling. However, an inner voice imposed an inexplicable calm and asserted that literally nothing was done to realize the idea championed by it. I had to analyze again the reasons for our failure. To do this analysis and to make a last attempt to successfully carry out the experiment, we had two to three weeks; after the end of February 2000, work in the scope of our project had to be interrupted for a long period or for ever. Our analysis revealed the following:
1. The localization of the focus of a superdense electron beam on the end of a target-anode is not stable. Hence, one should use a compulsory force fixation by unknown means. 2. Even if the above problem could be solved, the compression and superintense heating by the self-focusing electron beam cannot be considered a dominant perturbation common to the atoms and nuclei of a target substance, because, in this case, a coherent and unidirectional excitation of their states by a mass force is absent in principle. Moreover, the intense heating of a substance, only by increasing the energy of the chaotic movement of particles, cannot play the role of a dominant external perturbation in principle and, hence, cannot stimulate the evolutionary energy-gained fusion of the initial particles of a nuclearfuelintothemorehighlydevelopednuclearstructuresofsynthesis products.
Inother words, it was obvious that the heating of the plasma hampers the efficient and successful self-organizing synthesis of nuclei; rather than stimulating this process, it only creates the conditions for random binary nuclear collisions, only a small part of which can result in fusion. In this case, though, the reactions of synthesis for the lightest nuclei are energygained and are accompanied by the release of free energy; the mass defect formation does not lead for binary reactions to a decrease in the inertia of the entire totality of elements participating in the response on the external action by any from the separated degrees of freedom in the space of states
of the initial system of particles and hence does not correspond to the principle of dynamical harmonization. Nothing remained to be done except for one more attempt, possibly the last, to find the “golden key” for nucleosynthesis which, on the one hand, could explain at least a part of the actually observed astrophysical phenomena related to the creation of the spectrum of the chemical elements and, on the other hand, would admit the occurrenceof nucleosynthesis under laboratory conditions. Despite the drawn-out prehistory, the fast choice of a successful, as is now clear, solution was promoted by time restrictions and the complete absenceofanyconstructiveideasexceptonesnotcanonizedinthetraditional approaches to controlled thermonuclear synthesis. It became clear that the electron beam by itself is not a coherent and monochromatic flow of energy; it transfers energy to a target for a period that is long on the nuclear scale and thus cannot play the role of a dominant external perturbation for a macroscopic ensemble of particles that could act synchronously and co-phasally on them all as a mass force. At the same time, it is difficult to find an alternative to a weakly relativistic electron beam from the viewpoint of both the efficiency of a volume interaction with the target substance and the excitation of its collective degrees of freedom. One day, it suddently dawned on me, as a fully obvious thought, that the electron beam should be used for the excitation of a coherent avalanche-like self-supporting low or isentropic secondary (with respect to the beam) process which will develop by the laws of nonlinear phenomena with a positive feedback. The requirements of coherence and self-preservation for the initiated secondary process imply that this process has to be wavy and soliton-like, whereas the necessity of both a continuous “sharpening” of the process and a concentration of the released energy demands that the process should be self-focusing and spherically or cylindrically (concentrically) convergent. Intuitively, I felt the impending birth of the conception of the artificially initiated collapse of a microtarget, which is considered in the next chapter. This brought to a close the long prehistory of the invention of a means of shock compression of a substance, whose substantiation, experimental testing, and attempted theoretical explanation constitute the bulk of the present book.
ANAΔΗΜΟΣΙΕΥΣΗ ΑΠΟ ΤΟ ΒΙΒΛΙΟ:
"Controlled Nucleosynthesis Breakthroughs in Experiment and Theory"
Electrodynamics Laboratory “Proton-21” Kiev, Ukraine
Franco Selleri Universit`a di Bari Bari, Italy
Alwyn van der Merwe University of Denver Denver, Colorado, U.S.A.
Stanislav Adamenko
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου